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Annual Review August 2004

Investigating the Mechanism of Action and the Identification of Breast Carcinogens by Computational
Analysis of Female Rodent Carcinogens

DAMD17-01-1-0376

Albert R- Cunningham, Ph.D.

Introduction
The well-established breast cancer risk factors may account for only 47% of the breast cancer
incidence in the United States. This leaves a considerable portion of breast cancer from undetermined
origin. This project is investigating the potential that environmental chemicals and particularly those with
estrogenic activity may be involved in the etiology of breast cancer. We hypothesize that specific
features of chemicals can be identified that are significantly associated with female and breast
carcinogens and that these features are related to mechanisms of chemical carcinogenesis. Our overall
scientific objective is to investigate the hypothesized relationship between environmental chemicals,
xenoestrogens, and the developmental of breast cancer. The successful completion of this project will
provide mechanistic information related to chemical-induced breast cancer as well as structure-activity
relationship (SAR) models capable of estimating the likelihood that chemicals with unknown
carcinogenic activity may be breast carcinogens.

Body
Software Change
SAR modeling for this project was originally proposed to be conducted with the MCASE program.
However, for multiple reasons I have decided to develop our own system. This change does not alter
the project and I am currently working with LSU's Sponsored Program Administrator to update the
Statement of Work. I have discussed this matter with Dr. Moore. I am including the updated (but not
yet approved) Statement of Work in the appendices.

During the early part of the project it was becoming evident that MCASE was not developing models
that were of stellar predictivity. On account of successful modeling with SIMCA (soft independent
modeling of class analogy) of aromatic amine Salmonella mutagens and skin sensitizing agents for a
project supported by Proctor & Gamble, we spent some time investigating whether SIMCA models
could be employed to produce adequate models relating to this project.

We originally thought that SIMCA combined with HQSAR (hologram quantitative SAR) models
appeared to be superior to MCASE models. The HQSAR-SIMCA approach utilized categorical
biological data (i.e., carcinogen vs. non-carcinogen) and molecular fragments as SAR descriptors.
Therefore, this seemed a reasonable substitute SAR approach for MCASE. However, upon
consultation with the makers of Sybyl HQSAR- SIMCA, we learned that there was a large degree of
random assignment of SAR descriptors. Basically, as it turned out, although the modeling software was
able to produce models that could predict the activity of unknown clemicals-they were not very
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mechanistically insightful. In other words, we would not be able to interpret these models in order to
understand the structural attributes of breast carcinogens. Moreover, without an SAR model having a
solid and understandable mechanistic foundation, we were troubled that the even the "predictive"
models may have more to do with chance occurrences than tirue accurate predictions.

At this point I was concerned about the completion of the project. However, we have been successful
in developing a new SAR system that we are calling cat- SAR for categorical SAR, I discussed the
development of this new program with Dr. Moore-and we were in agreement that this would be an
appropriate path to take in order to achieve the overall goals of the project. The program has been
developed with guidance from Prof. Herb Rosenkranz. Dr. Rosenkranz is co-PI of this project and a
co-developer of MCASE.

I have one publication that has just been returned to the editor of SAR and QSAR in Environmental
Research along with the requested revisions. This manuscript described the program in detail. We note
the publication was on respiratory sensitizers-not breast carcinogens. The reason for this was 1) it
was a small and manageable dataset and 2) a previous MCASE analysis of this data yielded a very
good model. As such, this was a suitable dataset on which to develop and test the cat- SAR program.
A copy of the manuscript detailing the cat- SAR program is included in the appendices.

Specific Aim Accomplishments
The Specific Aims for year one are as follows:

Specific aim 1: Development and validation of SAR models for female breast carcinogens (months 1-
12).
a. Identify chemicals tested in female rodents from the Carcinogenic Potency Database and

the National Toxicology Program (month 1).
b. Enter chemical structures and potency values into MCASE program (months 2-8).
c. Validate models using 10-fold cross validation (months 9-12).
d. Summarize and interpret models and prepare publication.

These models have been developed and validated (i.e., a-c) as planned in MCASE as previously
reported. Within the last year, they have now been developed with the new cat- SAR program. We
have also updated rodent carcinogenicity models so that all models (mouse and rat as well and female
specific version) have been built on the same datasets and analyzed with the cat- SAR program. We are
preparing to publish two manuscripts describing mouse and rat mammary carcinogens.

Female Carcinogen Models
Specific Aim la is for the creation of female specific models. As discussed, these models have been
developed for MCASE. We are preparing to import these models to cat-SAR for analysis.
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Mammary Carcinogen Models
We have had great success in developing the mammary carcinogen model. So much so, in fact, we
started questioning the validity of the models. With respect to this, we have devoted a significant effort
in "assuring" their appropriateness. Basically, we have now developed several different mammary
carcinogen models. One set is based on mouse mammary carcinogens and one set is based on rat.

1. Rat Mammary Carcinogen Models: From the published CPDB target site summary (15) we
developed a SAR learning set of 100 compounds shown to induce breast cancer in rat. The cat- SAR
program develops SAR models through the comparison of structural features associated with
categorical responses (e.g., active and inactive compounds). When just considering carcinogenesis, the
categories are clearly carcinogens and noncarcinogens. However, when considering organ-specific
carcinogenesis, the question arises as to the selection of the inactive compounds. Should they be
noncarcinogens or carcinogens that are just not carcinogenic to the organ under study? For this
exercise we considered both options. (We note this important aspect of the project was not considered
in the original proposal.) Thus we developed two separate models for rat mammary carcinogens: The
mammary carcinogen - noncarcinogen model and the mammary carcinogen - non-mammary carcinogen
model.

Additionally, since the CPDB lists 449 compounds as rat noncarcinogens we had a choice of
noncarcinogens to include on the model. Likewise, the CPDB also lists 495 carcinogens, 395 of which

do not induce cancer in the mammary gland. For each model we randomly sampled the inactive
datasets to derive three sets (designated Models 1, 2 and 3 in Tables 1 and 2) of 100 chemicals each in
which to balance the 100 rat breast carcinogens. We did this to assure that our models were in fact
accurately describing mammary carcinogens-not just chance occurrences. (We note again this
important aspect of the project was not considered in the original proposal.) Statistical comparison of
the each of the model's fragment sets and predictivity was conducted to determine whether the three
sets were statistically different

Tables I and 2 (at the end of this report) are from a manuscript being prepared detailing the rat
mammary carcinogen models. Of particular note is that each set of models demonstrates predictivity for

unknown compounds in the 70-80% accuracy range (observed correct prediction rate or OCP). We
are currently in the process of a mechanistic analysis of the models in order to identify and understand
molecular attributes of breast carcinogens.

2. Mouse Mammary Carcinogen Models:
A similar group of analyses as listed above for rat carcinogens is being completed for mouse
carcinogens. The validation results are shown in Tables 3 and 4. These models are based on 24 mouse
mammary carcinogens from the published CPDB target site summary (15).
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The Second Specific Aim is:
Specific aim 2: Identify chemical and biological attributes of female and/or breast carcinogens to
provide evidence to test the hypothesis that xenoestrogens are involved in breast cancer (months 13-
36).

a. Compare and identify Structural Feature Overlap Method of female and breast
carcinogens to those of other available toxicological SAR models (see Facilities and
Equipment for a complete list of available models) (months 13-16).

b. As above using Joint Prevalence Method (months 16-24).
c. Identify the exact features of female and breast carcinogen models that are responsible

for predicted similar activities identified above (months 25-26).
d. Conduct QSAR and CoMFA analyses with chemicals containing these structures using

biological data from appropriate assays (months 28-36).
e. Conduct metabolism experiments on identified outliers to see whether metabolic

activation is required for activity and update models if required (months 28-36).
f Summarize and interpret data and prepare publications (months 28-36).

We are just concluding migration of a set of about 20 MCASE toxicological SAR models to cat-SAR.
We are in the process of validating these models. This is required for Specific Aim la and will be done
shortly. Of particular interest is the fact that we are developing three estrogen cat- SAR models that will
be directly applicable to testing the relationship between estrogenicity and mammary carcinogenicity.

We have also nearly completed the development of a new method, applicable to the cat- SAR program
for comparing joint prevalence (i.e, toxicological mechanism similarity) of SA 2b. We note we can still
perform this analysis with the previously published method since it only requires estimations of toxicity-
which do not require MCASE but can use cat- SAR derived values.

SA 2c,d, and f should be accomplished successfully in the upcoming year. We note that SA 3e requires
the MCASE module META. We do not have current access to a working copy of MCASE, though
Professor Rosenkranz is working on getting a copy for use with this project.

Key Research Accomplishments
Developed new SAR modeling algorithm called cat-SAR.

Developed predictive and mechanistically insightful SAR models for rat and mouse carcinogens and
mammary carcinogens

Development of shareable databases/learning sets of chemical carcinogens, their molecular structure and
associated activity values



Reportable Outcomes
Seminars
"Structure-activity relationships: Estrogen mimics and endocrine disruptors" presented to Professor
John McLachlan's research grup at Tulane University

Manuscripts
Cunningham AR, Cunningham SL, Consoer DM, Moss ST, Karol MH. Development of an
information-intensive structure- activity relationship model and its application to human respiratory
chemical sensitizers. SAR and QSAR in Environmental Research (pending acceptance of revisions)

Cunningham AR, Cunningham SL, Rosenkranz HR. Structure Activity Approach to the Identification of
Environmental Estrogens: The MCASE Approach. SAR and QSAR in Environmental Research 15:55-
67(2004).

Patent/copyright
We have submitted a patent and copyright application to LSU's Office of Intellectual Property for the
cat-SAR computational toxicology expert system. As noted, this system was developed to replace the
MCASE system described in the original proposal and SOW.

Funding Applied for Based on Work Supported by this Award
We note that the below listed proposals all relate to the discovery of novel antibreast cancer
therapeutics. Given that the estrogen receptor is involved in the etiology, cure, and prevention of breast
cancer, this IDEA Award has allowed us to pursue new avenues of research into drug discovery.

AWARDED
Pharmacophore discovery by differential toxicity studies, LSU Faculty Research Grant, (PI,
$10,000)

PENDING
A novel approach for the identification of phanmacophores through differential toxicity analysis of
estrogen receptor positive and negative cell lines, Department of Defense Breast Cancer Research
Program, pending (PI, $372,542)

Pharmacophore discovery by differential toxicity studies, National Institutes of Health, pending (PI,
$1,052,735)
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NOT AWARDED
Identification of pharmacophores through differential toxicity analysis: American Cancer Society,
submitted, 2003 (PI, $748,010)

Comment summary: The proposal was ranked 6th and not funded.

Identification of pharmacophores through differential toxicity analysis: Louisiana Board of Regents
Research and Development Program Research Competitiveness Subprogram, submitted, 2003 (PI,
$180,000 with $65,000 LSU match)

TO BE SUBMMTED
We note, beginning prior to July 14, 2004, we have started the preparation of two additional proposals
that are directly related to the successful development of mammary carcinogen models. These
proposals, which will be descnrbed in detail for the next report, employ the mammary carcinogen models
with geographic information system (GIS) analysis. These projects will look at breast cancer rates
related to toxic release inventory (TRI) data. We will use the models developed in this IDEA award to
estimate the breast cancer potential of TRI chemicals.

Conclusions
With the success of the rat and mouse mammary carcinogen models we are preparing two manuscripts
for publication. We are also pursuing work on a general chemical carcinogen manuscript and a one
describing female-specific carcinogens. Also of importance, we are working on several xenoestrogen
models that, although not detailed in the project proposal, will be of great importance for understanding
the endocrine disruptor link to breast cancer.

To date, after technically about two years of work we have developed the proposed models set forth in
Specific Aim 1 using MCASE. We are now slightly behind schedule due to the time required to
develop the cat- SAR program. However, in conjunction with this and other projects in my laboratory,
all the required components for Specific Aim 2 are being moved from MCASE to cat-SAR. There
should be no significant future delays or problems accomplishing the tasks of Specific Aim 2. This is of
particular relevance for Specific Aims 2a and 2b that require other toxicological models (e.g.,
mutagenicity and estmgenicity) on which to compare the female and mammary gland carcinogen
models.

Looking forward I see no obstacles to the successful completion of this project in a timely manner.
However, we may request a no cost extension. With the transition to cat-SAR we envision being able
to more accurately and thoroughly investigate the chemical structural attributes of breast carcinogens as
well as produce the required predictive models for estimating the mammary cancer causing potential of
untested chemicals.



TABLE 1. Predictive performance summary for rat mammary carcinogen- nonmammary carcinogen SAR model. The
ABC model was based on fragments of size between three and seven heavy atoms and considered atoms, bonds, and
atom connection. The ABCH model also included consideration of hydrogen atoms.

Model Total. Model Active Inactive Sensitivit Specificit OCP #
Fragments Fragments Fragments Fragments y y

ABC3/0.75
Model 1 13868 1349 849 500 0.80(70/88) 0.66(53/80) 0.73(123/168)

Model 2 14461 0.72(63/87) 0.72(59/82) 0.72(122/169)
Model 3 14427 1245 767 478 0.68(59/87) 0.74(64/86) 0.71(123/173)

ABC3/0.90
Model 1 13868 1102 731 371 0.83(58/70) 0.74(40/54) 0.79(98/124)
Model 2 14461 0.82(54/66) 0.72(44/64) 0.77(98/130)
Model 3 14427 847 520 327 0.82(51/62) 0.72(41/57) 0.77(92/119)

ABCH3/0.75
Model 1 32235 3679 2081 1598 0.81(78/96) 0.62(55/89) 0.72(133/185)
Model 2 32374 3921 2088 1833 0.70(66/94) 0.64(59/92) 0.67(125/186)
Model 3 32627 3497 1928 1569 0.75(70/93) 0.69(65/94) 0.72(135/187)

ABCH3/O.90
Model 1 32235 2750 1642 1108 0.81(65/80) 0.76(50/66) 0.79(115/146)
Model 2 32374 2947 1637 1310 0.75(55/73) 0.69(53/77) 0.72(108/150)
Model 3 32627 2241 1170 1071 0.81(63/78) 0.70(52/74) 0.76(115/152)

Footnotes:
Total Fragments: fragments derived from learning set.
Model Fragments: fragments meeting specified rules of the model.
Active Fragments: fragments meeting specified rules to be considered as active.
Inactive Fragments: fragments meeting specified rules to be considered as inactive.
Sensitivity: number of correct positive predictions / total number of positives.
Specificity: number of correct negative predictions / total number of negatives.
OCP: number of correct predictions / total number of predictions.
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TABLE 2. Predictive performance summary for rat mammary carcinogen- noncarcinogen SAR model. The ABC
model was based on fragments of size between three and seven heavy atoms and considered atoms, bonds, and atom
connection. The ABCH model also included consideration of hydrogen atoms.

Model Total. Model Active Inactive Sensitivit Specificit OCP#
Fragments Fragments Fragments Fragments y y

ABC3/O.75
Model 1 18021 1336 758 578 0.73(66/90) 0.78(69/88) 0.76(135/178)
Model 2 17369 1486 786 700 0.71(67/95) 0.79(71/90) 0.75(138/185)
Model 3 15547 1629 737 892 0.69(62/91) 0.76(67188) 0.72(129/179)

ABC3/0.90
Model 1 18021 1016 642 374 0.82(62/76) 0.78(47/60) 0.80(109/136)
Model 2 17369 1129 617 512 0.77(56173) 0.86(62172) 0.81(118/145)
Model 3 15547 1311 624 687 0.83(63/76) 0.73(44/60) 0.79(107/136)

ABCH310.75
Model 1 38797 3859 1790 2069 0.72(68/94) 0.76(68/90) 0.74(136/184)
Model 2 37636 4293 2007 2286 0.71(70/98) 0.76(74/97) 0.74(1441195)
Model 3 34407 4093 1785 2308 0.73(71/97) 0.65(62/95) 0.69(133/192)
ABCH3/0.90
Model 1 38797 2746 1434 1312 0.76(63/83) 0.78(61/78) 0.77(124/161)
Model 2 37636 2923 1392 1531 0.75(63/84) 0.77(66/86) 0.76(129/170)
Model 3 34407 2949 1372 1577 0.74(66/89) 0.71(52/73) 0.73(118/162)

Footnotes: see Table 1

11



TABLE 3. Predictive performance of the CPDB mouse mammary carcinogen - nonmammary carcinogen SAR model
with 3 to 7 heavy atoms.

Model Total. Model Active Inactive Sensitivit Specificity OCP#
Fragments Fragments Fragments Fragments y

ABC3/0.75
Model 1 5553 188 136 52 0.75(15/20) 0.61(11/18) 0.68(26/38)
Model 2 4718 138 69 69 0.80(16/20) 0.82(18/22) 0.81(34/42)
Model 3 6508 169 87 82 0.75(15/20) 0.78(14/18) 0.76(29/38)

ABC3/0.90
Model 1 5553 106 73 33 0.80(12/15) 0.50(4/8) 0.70(16/23)
Model 2 4718 116 62 54 0.79(15/19) 0.78(7/9) 0.79(22/28)
Model 3 6508 122 69 53 0.83(15/18) 0.67(4/6) 0.79(19/24)

ABCH3/0.75
Model 1 13517 801 591 210 0.62(13/21) 0.78(18/23) 0.71(31/44)
Model 2 12040 655 386 269 0.76(16/21) 0.82(18/22) 0.79(34/43)
Model 3 15187 753 434 319 0.62(13/21) 0.91(21/23) 0.77(34/44)

ABCH3/0.90
Model 1 13517 443 324 119 0.55(11/20) 0.55(6/11) 0.55(17/31)
Model 2 12040 544 329 215 0.84(16/19) 0.74(14/19) 0.79(30/.38)
Model 3 15187 553 352 201 0.79(15/19) 0.63(5/8) 0.74(20/27)

Footnotes: see table 1

TABLE 4. Predictive performance of the CPDB mouse mammary carcinogen - rodent noncarcinogen SAR model with
3 to 7 heavy atoms.

Model Total. Model Active Inactive Sensitivit Specificity OCP#
Fragments Fragments Fragments Fragments y

ABC3/0.75
Model 1 6414 379 72 307 0.84(16/19) 0.77(13/17) 0.81(29/36)
Model 2 6504 357 185 172 0.72(13/18) 0.65(11/17) 0.69(24/35)
Model 3 6157 294 172 122 0.75(12/16) 0.83(15/18) 0.79(27/34)

ABC3/0.90
Model 1 6414 352 84 268 0.87(13/15) 0.44(4/9) 0.71(17/24)
Model 2 6504 244 192 52 0.86(12/14) 0.40(4110) 0.67(16/24)
Model 3 6157 195 109 86 0.86(12/14) 0.75(6/8) 0.82(18/22)

ABCH3/0.75
Model 1 14963 1396 436 960 0.85(17/20) 0.68(13/19) 0.77(30/39)
Model 2 15956 1502 672 830 0.63(12/19) 0.58(11/19) 0.61(23/38)
Model 3 14819 1188 658 530 0.79(15/19) 0.79(15/19) 0.79(30/38)

ABCH3/0.90
Model 1 14963 1346 466 880 0.72(13/18) 0.80(12/15) 0.76(25/33)
Model 2 15956 1022 634 388 0.77(13/17) 0.65(11/17) 0.71(24/34)
Model 3 14819 1010 607 403 0.77(13/17) 0.67(10/15) 0.72(23/32)

Footnotes: see table 1
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Revised Statement of Work

The Statement of Work from the original application is provided below. The Statement of Work remains the same.

We are requesting in the revised budget an extension on year one. To date, Specific Aim la and lb are nearly
complete and Specific Aim ic has been started.

Title: Investigating the mechanisms of action and the identification of breast carcinogens by computational analysis
of female rodent carcinogens

PI: Albert R. Cunningham, Ph.D.

Specific aim 1: Development and validation of SAR models for female breast carcinogens (months 1-12).
a. Identify chemicals tested in female rodents from the Carcinogenic Potency Database and the National
Toxicology Program (month 1).

b. Enter chemical structures and potency values into MCASE program (months 2-8).
c. Validate models using 10-fold cross validation (months 9-12)
d. Summarize and interpret models and prepare publication.

Deliverable: If appropriate, publications describing rodent female and breast carcinogen models. This will include
publishing data used to generate model and the achieved predictivity of the models for potential use in analyzing
environmental chemicals for the identification of breast carcinogens.

Specific aim 2: Identify chemical and biological attributes of female and/or breast carcinogens to provide evidence
to test the hypothesis that xenoestrogens are involved in breast cancer (months 13-36).

a. Compare and identify Structural Feature Overlap Method of female and breast carcinogens to those
of other available toxicological SAR models (see Facilities and Equipment for a complete list of available
models) (months 13-16).

b. As above using Joint Prevalence Method (months 16-24).
c. Identify the exact features of female and breast carcinogen models are responsible for predicted

similar activities identified above (months 25-26).
d. Conduct QSAR and CoMFA analyses with chemicals containing these structures using biological

data from appropriate assays (months 28-36).
e. Conduct metabolism experiments on identified outliers to see whether metabolic activation is

required for activity and update models if required (months 28-36).
f. Summarize and interpret data and prepare publications (months 28-36).

Deliverables: Publication describing the role of estrogens and other toxicological events in the induction
of female and breast cancer. Possible publication describing role of metabolism and biodegradation in
converting inert chemicals into female or breast carcinogens. Publication assessing the overall
accomplishments of using SAR analysis for the detection of breast cancer agents and the mechanistic
information that was obtained describing the etiology of breast cancer and the mechanisms of action of
breast carcinogens.

STATEMENT OF WORK UPDATE AUGUST 2004:
Due to a variety of reasons the PI has decided not to use MCASE for this project but to develop and
use an alternative SAR program called cat- SAR. This has been discussed with Dr. Moore. The cat-
SAR program has been developed and is capable of meeting the requirements of this project with the
exception of Specific Aim 2e. This was not a significant Aim. We do, however, note that Professor
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Rosenkranz at Florida Atlantic may have a working copy of MCASE in the near future thus allowing
SA 2e to be pursued.

The reason for not using MCASE stems primarily from problems encountered in the cost of licensing. It
approximately doubled since the original submission of the proposal. From a scientific point-of-view,
the cat-SAR program stands alone from other computerized SAR expert systems in its openness,
flexibility, routines for identifying important attributes of biological activity or inactivity, and its method
for predicting the activity of untested compounds. Several commercially available computational SAR
expert systems including MultiCASE, TOPKAT, and Oncologic are relatively closed systems where
proprietory (and unknown) routines are used to generate the final model. On the other hand, cat-SAR
is completely open with every detail of modeling transparent to the user. As for inflexibility, many of the
commercially available expert systems maximally only allow the user to alter the makeup of the learning
sets (users cannot alter the parameters for model development). The cat- SAR approach allows the
user to select and/or adjust many parameters during the modeling process from learning set makeup, to
selection of types of fragment attributes to consider, to ultimately what numerical or statistical
considerations are employed in developing the final model.
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ABSTRACT

Structure-activity relationship (SAR) models are recognized as powerful tools to predict the

toxicologic potential of new or untested chemicals and also provide insight into possible

mechanisms of toxicity. Models haw been based on physicochemical attributes and structural

features of chemicals. We describe herein the development of a new SAR modeling algorithm

called cat-SAR that is capable of analyzing and predicting chemical activity from divergent

biological response data. The cat-SAR program develops chemical fragment-based SAR models

from categorical biological response data (e.g., toxicologically active and inactive compounds).

The database selected for model development was a published set of chemicals documented to

cause respiratory hypersensitivity in humans. Two models were generated that differed only in

that one model included explicate hydrogen containing fragments. The predictive abilities of the

models were tested using leave-one-out cross-validation tests. One model had a sensitivity of

0.94 and specificity of 0.87 yielding an overall correct prediction of 91%. The second model had

a sensitivity of 0.89, specificity of 0.95 and overall correct prediction of 92%. The demonstrated

predictive capabilities of the cat-SAR approach, together with its modeling flexibility and design

transparency, suggest the potential for its widespread applicability to toxicity prediction and to

deriving mechanistic insight into toxicologic effects.

Keywords:

structure-activity relationship (SAR); in silico modeling; respiratory sensitizer; predictive

toxicology; chemical fragments; categorical SAR (cat-SAR) program
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INTRODUCTION

The task of identifying toxic agents is not a small or trivial challenge. One approach has been to

use mathematical models that relate biological activity to chemical structure. Benfenati and Gini

[1] describe modem structure activity relationship (SAR) and quantitative SAR (QSAR) methods

as typically involving three parts: 1) the chemical part, 2) the biological part (i.e., activity), and

3) the methodology for relating parts 1 and 2. The main premise for these methods is that

recurring and identifiable attributes of chemicals are associated with, or responsible for,

particular biological effects. The attributes can take many forms including chemical structures,

chemicophysical or quantum mechanical properties, and graph indices, to name a few. There are

numerous methods that relate chemical structure with activity such as those based on human

expertise like Ashby's "structural alerts" for potential carcinogenicity [2-4] to statistical QSAR

methods like Hansch analysis (see [5]), comparative molecular field analyses (CoMFA) [6], and

MCASE [7-9].

Advances in computing and chemoinformatics, standardized biological or toxicological testing,

and the subsequent development of large libraries of test results have ushered in the era of

computational or in silico SAR. Computational SAR models have gained recent acceptance in

the regulatory community for both human health [ 10] and ecological endpoints [ 11 ]. Dearden

succinctly summarized the field of computational SAR or in silico toxicity prediction to include

QSAR models of congeneric and noncongeneric datasets and "expert systems" [12]. The utility

and application of some important expert system toxicology prediction methods have been

reviewed by Richard [13, 14]. Through the use of various techniques, the overall goal is to
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identify meaningful associations between activity and chemical structure. These associations can

then be used to investigate the underlying mechanisms of toxicity, or be extended to estimate or

predict the toxicity of untested compounds.

With today's fast CPUs, abundant amounts of computer memory, and the availability of

chemical informatics and graphics software we have aimed to readdress the challenge of

computer-based SAR expert systems for modeling large and chemically diverse datasets. We

describe herein the first generation of a new data and information-intensive approach to

toxicological SAR modeling. The program is based on the Well-established premise in SAR

modeling that like structure begets like activity and employs chemical substructures to

differentiate between categories of biologically active and inactive compounds for toxicological

endpoints. We have named the new program cat-SAR for categorical SAR.

The cat-SAR program uses 2-dimensional chemical fragments generated by the Sybyl HQSAR

module. We chose early in the development process of cat-SAR to use the Sybyl platform which

already possessed the needed utilities of in silico chemical fragmenting, molecular graphics, and

chemical informatics and database requirements associated with our modeling goals. Of

importance, the HQSAR module is used solely to generate molecular fragments and is not used

for further model development or statistical analysis.

Briefly, the HQSAR module is used to generate a list of chemical fragments associated with

compounds in a learning set and produce a data matrix of compounds and fragments. In the data

matrix, the rows are the chemicals and the columns are the molecular fragments. Thus for each
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chemical, a tabulation of all its fragments are recorded across the table rows and for each

fragment all chemicals that contain it are tabulated down the table columns. The compound-

fragment matrix is then analyzed, in conjunction with the known biological activity category of

each compound, by the cat- SAR program. The cat- SAR program identifies structural features

associated with the biologically active and inactive categories. The cat-SAR program, the

respiratory sensitizer learning set (described below), and the compound-fragment matrix are

available through the corresponding author.

Since cat-SAR modeling is independent of the biological data used in the process we anticipate

that it can be generally applied from the study of drugs to environmental toxicants. Moreover,

the models can be used for either mechanistic studies of biological phenomena or for the

prediction of biological activity for untested compounds.

The cat- SAR program stands alone from other computerized SAR expert systems in its openness,

flexibility, routine for identifying important attributes of biological activity or inactivity, and its

method for predicting the activity of untested compounds. Several commercially available,

computational SAR expert systems including MultiCASE, TOPKAT, and Oncologic are

relatively closed systems where proprietory (and unknown) routines are used to generate the

final model. On the other hand, cat-SAR is completely open with every detail of modeling

transparent to the user. As for inflexibility, many of the commercially available expert systems

maximally only allow the user to alter the makeup of the learning sets (users cannot alter the

parameters for model development). The cat-SAR approach allows the user to select and/or

adjust many parameters during the model process from learning set makeup, to selection of types
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of fragment attributes to consider, to ultimately what numerical or statistical considerations are

employed in developing the final model. These are described in detail below.

The cat-SAR approach is also a very data- and information- intensive SAR expert system.

During model development and the creation of the final model, all fragments associated with the

categories are presented. This leaves the user with an unbiased view of all important features

associated with the biological endpoint. Consider the fact that the published MCASE model of

the same respiratory sensitizer learning set used herein produced a model based on eight

biophores and no biophobes [15]. One of the models developed with the cat-SAR program

produced 1213 fragments associated with activity and 92 associated with inactivity. Similarly,

the prediction of the activity of compounds outside the model's learning set presents the user

with a complete correspondence between all the fragments in the model (e.g., 1213 active and 92

inactive) and those in the compound being predicted. Again considering the published

MultiCASE report for this dataset, MultiCASE predicted the activity of methyldopa and

presented the user with two reasons (i.e., biophores) for why the compound was predicted active.

The cat-SAR program provided 22 reasons.

The approach we have taken in developing cat-SAR clearly diverges from existing SAR expert

systems and is more in tune with modem QSAR techniques. For instance, the user is presented

with a number of selectable and adjustable modeling parameters. The otion of having

selectable and adjustable modeling parameters facilitates that ability to rigorously explore the

relationships between chemical structure and biological activity.
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We chose to test the method on a previously published respiratory sensitization model due to its

small size (i.e., 80 compounds) and good modeling potential that was previously demonstrated

using CASE-MultiCASE [15].

The cat-SAR program of course has some drawbacks and limitations. Like so many other expert

systems in toxicology, it is applicable only to organic chemicals. Metals, mixtures, and

polymeric compounds are not suitable for analysis. Moreover, as mentioned, the cat-SAR

program presents the final SAR model, in terms of all relevant fragments. This lead to a model

that may contain 1 000s of fragments which may lead to difficulty in model interpretation.

This model has recently been reviewed by Rodford et al. [16]. Unlike other 2-dimensional

modeling approaches including MultiCASE, the cat-SAR approach is transparent in development

of the learning set, identification of fragments (i.e, biophores or activity descriptors), and

determination of significant fragments. Moreover, the approach allows user intervention and

model optimization throughout the modeling process. This method includes the ability to

examine the entire fragment base, and to explore and optimize the fragments that have biological

relevance.

MATERIALS AND METHODS

Description of the cat-SAR SAR Program
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The cat-SAR models are built through a comparison of structural features found amongst the

active and inactive compounds in the model's learning set. A categorical approach is used with,

in this instance, compounds designated as active or inactive. For this exercise, active compounds

were chemical respiratory sensitizers and inactive compounds were nonsensitizers. The

modeling process began with the compilation of a set of chemicals and their biological activity

(described below). Using the Tripos Sybyl HQSAR module, each chemical was fragmented into

all possible fragments. HQSAR allows the user to select attributes for fragment determination

including atom size, bond types, atomic connections, inclusion of hydrogen atoms, chirality and

hydrogen bond donor and acceptor atoms. Moreover, fragments can be linear, branched or

cyclic moieties.

We developed two sets of fragments from the model's learning set. The first (fragment set ABC)

contained fragments between three and seven atoms in size and considered Atoms, Bonds types,

and atomic Connections (i.e., the arrangement of atoms in the fragment). The second (fragment

set ABCH) included the same descriptors as the previous set plus associated Hydrogen atoms. A

compound-fragment matrix was produced for both sets of fragmerts.

A measure of each fragment's association with biological activity was next determined. This

step is controlled by the user. To ascertain an association between each fragment and activity (or

lack of activity) a set of rules is established to choose "important" active and inactive fragments.

It should be noted that in this generation of the program we are using a common-sense approach,

rather than statistical analysis, to select "significant" fragments.
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The first selection rule is the number of times a fragment is identified in the learning set. For this

exercise, it was arbitrarily set at three compounds (or 3.75%) of the compounds in the learning

set. This was a reasonable decision considering that if a fragment is found in only one or two

conpounds in the learning set it nray be a chance occurrence. We do, however, note that

fragments found in only one or two compounds may not be outliers but rather underrepresented

descriptors of activity. On the other hand, since the learning set is composed of only 40 active

and 40 inactive compounds, if we required fragments to be found in more than three compounds,

we would expect to miss important features.

The second rule relates to the proportion of active or inactive compounds that contain each

fragment. For both the ABC and ABCH fragment sets, we set the proportion at 0.90. We

reasoned that even if a particular fragment is associated with activity, there may yet be other

reasons (i.e., fragments) for its being inactive, thus it would not be expected to be found in 100%

of the active compounds. Likewise is true for inactive fragments. Thus, if we considered only

those fragments found exclusively in active or inactive compounds we would rarify the

fragments pool to an unreasonable level and risk losing valuable information. On the other hand,

we expected that fragments found to be present approximately equally in the active and inactive

fragment sets would not be associated with biological activity. Such fragments may serve as

chemical scaffolds holding the biologically active features and are not directly related to activity

or inactivity.

9



In summary, fragments were considered "significant" if they were found in at least three

compounds in the learning set and also found in at least 90% of the active or inactive compounds

that derived them. The two models developed are listed in Table I.

The resulting list of fragments can then be used for mechanistic analysis, or to predict the

activity of an unknown compound. In the latter circumstance, the model determines which, if

any, fragments from the model's learning set the compound contains. If none are present, no

prediction of activity is made for the compound. If one or more fragments are present, the

number of active and inactive compounds containing each fragment is determined. The

probability of activity or inactivity is then calculated based on the total number of active and

inactive compounds containing the fragments.

The probability of activity of a test chemical is calculated from the average probability of active

and inactive fragments. For example, if a test compound contains two fragments, one is present

9/10 times in an active compound (i.e., 90% active) and one is found 3/3 times in an inactive

compound (i.e., 100% inactive), the unknown compound will be predicted to be inactive based

on the higher probability of inactivity derived from chemicals containing these fragments.

In this manner, the probability of activity or inactivity is determined by comparison of the

structure of the unknown compound with the entire structural information present in the model.

It requires noting that cat-SAR predictions are based on what can be conceived as two separable

models: The inactive fragment model and the active fragment model. By so doing, cat-SAR

predictions are based on information that is associated with biological activity and inactivity.
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The cat- SAR program does not employ the use of default predictions wherein, as in the case of

MultiCASE, if no biophores are present in an unknown chemical it is predicted by default to be.

inactive. This, of course, presents the situation wherein the cat-SAR program will not make

predictions on some chemicals. Although this may seem like a drawback to the program by

appearing less universal, the user of the program always has the option to simply define

chemicals that are not predictable by cat-SAR with a default value.

Respiratory Sensitization Databases

The dataset of respiratory sensitizers has been reported [15]. Briefly, chemical sensitizers were

identified through a search of the medical literature. Selection criteria were in accordance with

the U.S. Department of Health and Human Services "Guidelines for Diagnosis and Treatment of

Asthma" [ 17]. The search criteria included chemicals with inhalation challenge followed by a

drop of >20% in forced expiration volume at 1 s within 24 h of challenge. Forty compounds

were identified. No reports were identified of chemicals tested as described and found to be

nonsensitizers in humans except for the often-used control substance, lactose. Since, as

discussed, the cat-SAR method requires a comparison of biologically active with inactive

compounds, we designated as "negative" a set of 40 chemicals previously selected as respiratory

nonsensitizers by Graham et al. [15]. These 40 compounds were randomly selected from a

dataset of chemicals tested for human allergic contact sensitizing ability via patch testing and

were found to be nonsensitizers [18]. The assumption was made that dermal nonsensitizers
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would also be respiratory nonsensitizers. In general, chemicals were relatively small organic

compounds that did not include salts, metals, mixtures, or polymers.

RESULTS AND DISCUSSION

Predictive Performance of the cat-SAR Respiratory Sensitization Models

To evaluate the predictive ability of the models, a leave-one-out cross-validation test was

conducted. For each chemical in the learning set, one at a time, its chemical fragments were

removed from the total fragment set, and the probability of activity or inactivity associated with

each fragment was recalculated. Using the criteria described above to estimate activity of

unknown compounds, the activity of the removed chemical was predicted.

Overall, the ABC and ABCH models correctly classified 91% and 92% of the chemicals they

were capable of predicting (Table I). The predicted activity for each chemical is listed in Table

II. The cat-SAR program, using the n-I leave-one-out cross-validation learning sets (i.e., models

built on 79 compounds), was unable to make predictions for five chemicals in the ABC model

and three in the ABCH (Table II). The reason for this is that each of these compounds did not

possess any structural features that the n- I models could base a prediction upon. A previous

CASE/MultiCASE model of the same data reported an overall correct classification of 95%.

This was based on the Bayesian combination of four CASE/MultiCASE submodels that

individually had sensitivities ranging from 72% - 80% and specificities ranging from 95% - 98%

[15]. In a separate published model based on chemicophysical parameters, a sensitivity of 85%
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and a specificity of 74% was achieved [19]. Interestingly, the individual ABC and ABCH cat-

SAR models are quite balanced with respect to sensitivity and specificity (Table 1). This is not

the case with the previous CASE/MultiCASE and chemicophysical models. The individual

CASE/MultiCASE models tended to have a better ability to predict the inactive chemicals and

the chemicophysical model was better able to predict the active ones.

The question arises as to why the program produced wrong predictions. In the case of any of the

previously mentioned respiratory sensitizing models, the simplest explanation lies in the

possibility that some of the information on which the models were built is not correct. Consider

the National Toxicology Program's Salmonella mutagenicity database. The Salmonella database

is derived from a standardized protocol and, more importantly, has been analyzed for

reproducibility and accuracy by replicate analyses of chemicals [20]. The interlaboratory

reproducibility of the Salmonella mutagenicity assay is only 85% [20]. Therefore, the databases

may contain some incorrect information.

However, other explanations should be considered. The incorrect ABC model prediction for

hexamethylene diisocyanate and the incorrect ABC and ABCH model predictions for isophorone

diisocyanate are of interest. They both contain the isocyanate moiety which is clearly associated

with biological activity. The cat-SAR program also identifies this moiety in these two

compounds. However, the compounds contain a number of inactivating fragments that

counterbalance the isocyanate-related ones. At this time, a complete understanding of the

inaccurate predictions in not possible, but further development of both the models and the

databases should lead to a more comprehensive analysis.
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Respiratory Sensitization Model Analysis

As described above, two models were developed using the same set of 80 compounds. These

models can be considered as independent since they are built upon different fragment bases. The

ABC model started with a total fragment set of 5737 and the ABCH model with a set of 14424

fragments (Table I). In both models, approximately 23% of the total number of fragments met

the criteria to be considered "significant" (i.e., 1307 significant /5753 total =22.7% for ABC and

3356 significant /144424 total =23.2%) (Table I). The remaining fragments were either not

present in a sufficient number of compounds (i.e., found in <3 or 3.75% of compounds in the

learning set), or the fragments did not come from compounds that were predominately (i.e.,

>90%) active or inactive.

Overall, both models performed similarly. However, when considering the sensitivity and

specificity of the models, the distinction was not clear-cut. The ABC model was better able to

correctly predict the active chemicals while the ABCH model was better able to predict the

inactive ones. At this point, we chose to focus on the ABC model. This decision was based on

several criteria: 1) Both models have nearly equivalent correct prediction rates (Table I) and

make similar predictions on the majority of compounds in the validation set (Table II), 2)

Considering the law of parsimony, the ABC model is based on fewer fragments, and 3) The

models are constructed from a set of 40 chemicals tested and found to be respiratory sensitizers,

whereas the set of 40 chemicals designated as "inactive" are presumed to lack activity.

Therefore, based on the quality of information of these active and inactive sets, we favored a

model with better ability to predict activity as compared with inactivity.
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Although beyond the scope of this report, we bring attention to the finding that the cat-SAR

method derives multiple independent models for the same endpoint. The observation that the

ABC and ABCH models do not predict the same activity for each chemical suggests that the

models may be capable of describing different attributes of the activity. This suggests the

possibility of development of a consensus model using a Bayesian technique similar to those

previously reported using CASE/MultiCASE [15].

Examples of the cat-SAR Model Predictions

Methyldopa and 2,4-dimethylbenzyl acetate were selected to demonstrate the predictive ability

of the cat-SAR modeling method for an active and inactive chemical, respectively. For this

demonstration, we used the ABC model for reasons just described. Tables IlI and IV list the

significant fragments derived from the two compounds. Figures 1 and 2 illustrate the intact

compounds and their associated fragments. The predictions presented for the two compounds

are based on results obtained from the leave-one-out validation exercise. Therefore, the

compounds themselves are not contributing to the fragment set of the model and are thus not

influencing their own prediction of activity or inactivity.

Table III lists and Figure 1 shows all the significant fragments used in the leave-one-out

validation exercise to predict the activity of methyldopa. Methyldopa was predicted to have a

probability of activity of 0.988. This represents the average probability of activity of the 22
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fragments used in the prediction (Table II). No fragments associated with methyldopa were

considered inactive.

Likewise, Table IV and Figure 2 show all the significant fragments used in the validation

exercise to predict the activity of 2,4-dimethylbenzyl acetate. 2,4-Dimethylbenzyl acetate was

predicted to have a probability of inactivity of 1.0.

As indicated, the prediction for the respiratory sensitizing ability of methyldopa and 2,4-

diemthylbenzyl acetate were based on the complete correspondence of significant fragments

from the model's validation set to all the fragments identified in the compound. Methyldopa was

predicted to be active based on 22 fragments from its validation set of fragments. Inspection of

these fragments revealed several major themes. Fragment 348 leads to a series of complimentary

moieties covering the amine to carboxylic acid portion of the molecule. Fragment 283 covers the

para unsubstituted phenol and accounts for four other validation fragments. Fragment 2706

covers the 3,4-diol and accounts for five other validation fragments. Fragments 2415 and 2416

are closely related to Fragment 2706 but cover just the 3-hydroxyl.

For 2,4-dimethylbenzyl acetate, Fragments 4970 and 4979 cover thepara substituted methyl

section of the molecule. Moreover, Fragment 5073 covers the 2,4-methyl substitution and can

account for four similar fragments.

From a prediction point-of-view, any one fragment would have been sufficient for the accurate

prediction in these examples. From a mechanism point-of-view, for methyldopa, just the four
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major fragment families (i.e., from fragments 348, 283, 2706, and 2416) would have covered the

major identified structural themes relating to activity. The same is true for 2,4-dimethylbenzyl

acetate where two sets of similar fragments (i.e., from fragments 5073 and 4970) described the

compound. In this model, the fragment redundancy is obvious. However, we speculate that this

may not be the case with other toxicological endpoints. In models for other endpoints, where

fragments are similar but not exact, each fragment may contribute novel mechanistic and

predictive information to the model.

Clearly, from the results of the validation exercises, the cat-SAR program in not performing at

100% accuracy. To judge the predictive performance of our models, we compared them to two

previously developed MCASE models. One model is based on the National Toxicology

Program's Salmonella mutagenicity database. The Salmonella database is derived from a

standardized protocol and, more importantly, has been analyzed for reproducibility and accuracy

by replicate analyses of chemicals [20]. The interlaboratory reproducibility of the Salmonella

mutagenicity assay is 85% [20].

CONCLUSIONS

The new cat-SAR modeling approach described herein has a predictive ability in line with other

respiratory sensitization models developed by us [15, 19]. This clearly suggests its utility and

warrants further development. It is applicable to toxicological or pharmacological SAR

modeling. The cat-SAR program uses a binary approach to identify structural features associated

with biological activity or inactivity. This is straightforward when the toxicologic endpoint is
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categorical (e.g., sensitizers vs. nonsensitizers, carcinogens vs. noncarcinogens or mutagens vs.

nonmutagens). However, for other endpoints, where a continuous scale of activity is measured,

the dichotomy can be imposed between highly active and less active compounds (e.g., extremely

toxic vs. nontoxic as in the case of LD50 values or high or low receptor affinity as in the case of

estrogen receptor ligands).

The cat-SAR method has two main areas of strength when compared with other 2-dimensional

modeling systems. The first is the transparency of the method. The derivation of model

fragments and decision rules are open for inspection. The entire compound-fragment matrix and

the identified model fragments are all easily inspected. The second strength is the amount of

user-selectable parameters available for adjustment. For the fragment development part of the

program, the user can select fragments of different size and choose other fragment attributes

including the consideration of atoms, bond, and hydrogen atoms. Moreover, when identifying

important or significant fragments the user can manipulate the selection process by altering the

requirements for how many compounds in the learning set contain each fragment and also what

proportion of active or inactive compounds in the leaming set contain the fragment.

Thus, the cat-SAR method is transparent with regard to the overall modeling process. Users of

the program have the opportunity to optimize the process for their own needs. Considering the

fact that toxicologic endpoints differ in their mechanisms, it makes sense that the modeling

algorithm should be transparent to meet the requirements of the endpoint being modeled.
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Overall, in prediction mode, this method preserts the user with a complete correspondence of

fragments in the model and the unknown chemical. In model analysis mode, the method

provides the user with a complete listing of all interesting fragments. It should be noted that

there is no hierarchy of fragments or filtering of "significant" fragments other than what the user

chooses. There are no hidden or proprietary rules in the process. All fragments that meet the

user-specified structural requirements and the rules of association with activity or inactivity are

included in the model. This leads to the identification of many (e.g., 1000s) fragments, some

with great structural similarity. This clearly presents difficulty in being able to succinctly

describe the model. However, important information is retained and accessible to the user.
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TABLE I Predictive performance of ABC and ABCH respiratory sensitization models. The
ABC model was based on fragments of size between three and seven heavy atoms and
considered atoms, bonds, and atom connection. The ABCH model also included consideration
of hydrogen atoms.

Model Total. Model Active Inactive Sensitivity§ Specificity I OCP#
Fragments* Fragments t Fragments t Fragments¶

ABC 5737 1305 1213 92 0.94 0.87 0.91
ABCH 14424 3356 2926 430 0.89 0.95 0.92

Footnotes
* number of fragments derived from learning set.
t number of fragments meeting specified rules of the model.

number of fragments meeting specified rules to be considered as active.
¶ number of fragments meeting specified rules to be considered as inactive.
§ number of correct positive predictions / total number of positives.
11 number of correct negative predictions / total number of negatives.
# Observed Correct Predictions: number of correct predictions / total number of predictions.
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TABLE HI Model validation for respiratory sensitizers. Compounds with values above 50%
were predicted to be active compounds and those below 50% were predicted to be inactive.

Model 3-7/3/0.90
Experimental ABC ABCH

Chemical Activity % Active % Active

1,5-Napthalene diisocyanate + 1.00 1.00
2-(N-Benzyl-N-tert-butylamino)-4'- +
hydroxy-3'-hydroxymethyl acetophenone
diacetate 0.63 0.59
2,4-Toluene diisocyanate + 1.00 1.00
2,6-Toluene diisocyanate + 1.00 1.00
6-Amino penicillanic acid + 1.00 1.00
7-Amino cephalosporanic acid + 0.99 0.99
Ampicillin + 1.00 1.00
Azocarbonamide + 1.00 0.98
Benzylpenicillin + 1.00 1.00
Brilliant orange GR + 1.00 1.00
Carminic acid + 0.57 0.54
Cephalexin + 1.00 1.00
Chlorhexidine + 1.00 0.96
Dichlorvos + * *

Dimethyl ethanolamine + 1.00 1.00
Diphenyl methane-4,4'-diisocyanate + 1.00 1.00
Epigallocatechin gallate + 0.57 0.60
Ethanolamine + 1.00 1.00
Ethyl cyanoacrylate + * 0.03t
Ethylenediamine + 1.00 1.00
Fenthion + 0.91 0.96
Hexamethylene diisocyanate + 1.00 0.38t
Isononanoyl oxybenzene sulfonate + 0.98 0.82
Isophorone diisocyanate + 0.22t 0.17t
Maleic anhydride + 1.00 1.00
Methyl-2-cyanoacrylate + * *

Methyldopa + 0.99 0.95
Phenylglycine acid chloride + 1.00 1.00
Phthalic anhydride + 1.00 1.00
Piperacillin + 1.00 1.00
Piperazine + 1.00 1.00
Plicatic acid + 0.53 0.74
Reactive orange 3R + 1.00 1.00
Rifafix red BBN + 1.00 1.00
Rifazol black GR + 1.00 1.00
Tetrachloroisophthalonitrile + * *

Tetrachlorophthalic anhydride + 1.00 1.00
Triethylenetetramine + 1.00 1.00
Trimellitic anhydride + 1.00 1.00
Tylosin + 0.141 0.14t
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1,1,3,3,5-Pentamethyl-4,6-Dinitroindane - 0.00 0.00
1,4-Cineole - 0.00 0.04
1-Hexanol -* 0.07
2,4-Dimethylbenzyl acetate - 0.00 0.02
2-Butyl-4,4,6-trimethyl-1,3-dioxane - 1.00t 0.50
2-tert-Amylcyclohexyl acetate - 0.03 0.06
3,6-Dimethyloctan-3-yl acetate - 0.05 0.06
3-Butyl phthalide 0.03 0.06
4-Acetyl-6-tert-butyl-1,1 -dimethylindane - 0.00 0.06
5-Methyl a-ionone 0.12 0.09
9-Decenyl acetate 0.05 0.05
Acetyl ethyltetramethyltetralin 0.00 0.00
Allyl heptylate 0.10 0.05
Benzyl butyrate 0.10 0.06
Butyl isobutyrate 0.06 0.07
Camphene 0.00 0.04
cis-3-Hexenyl anthranilate 0.65t 0.35
cis-4-Decen-l-al 0.03 0.04
Citronellyl nitrile 0.03 0.05
Cyclohexylethyl alcohol 0.00 0.06
Dibutyl sulphide 1.00t 0.93
Dihydro-isojasmone 0.03 0.04
Dimethylheptenol 0.03 0.05
Ethyl acetoacetate ethylene glycol ketal - 0.27 0.19
Ethyl lactate 0.09 0.07
Eugenyl phenylacetate 1.00t 0.81T
?-Dodecalactone 0.05 0.07
Geranyl benzoate 0.03 0.06
Heptyl butyrate 0.06 0.06
Hexane 0.00 0.09
Hexyl tiglate 0.04 0.06
Isoamyl butyrate 0.06 0.06
Lactoscatone 0.04 0.05
/-Carvyl propionate 0.04 0.04
Methyl tiglate 0.09 0.07
Musk xylol 0.00 0.00
Phenylethyl acetate 0.77t 0.32
p-lsopropylcyclohexanol 0.00 0.04
Rhodinyl formate 0.03 0.05
Undecenyl acetate 0.05 0.05

Footnotes
* no prediction was made for the compound
t wrong prediction was made for the compound

22



TABLE mI Fragments from the ABC model leave-one-out validation analysis used to predict
the activity of the respiratory sensitizer methyldopa.

Fragment No. Active* No. Inactivet Totalt %Active %Inactive

frag258 10 1 11 0.909 0.091
frag283 10 1 11 0.909 0.091
frag308 10 1 11 0.909 0.091
frag348 8 0 8 1.000 0.000
frag357 8 0 8 1.000 0.000
frag400 14 0 14 1.000 0.000
frag471 6 0 6 1.000 0.000
frag522 6 0 6 1.000 0.000
frag914 4 0 4 1.000 0.000
frag915 4 0 4 1.000 0.000
frag920 4 0 4 1.000 0.000
frag921 4 0 4 1.000 0.000
frag2378 3 0 3 1.000 0.000
frag2401 3 0 3 1.000 0.000
frag2415 3 0 3 1.000 0.000
frag2416 3 0 3 1.000 0.000
frag2463 3 0 3 1.000 0.000
frag2471 3 0 3 1.000 0.000
frag2472 3 0 3 1.000 0.000
frag2507 3 0 3 1.000 0.000
frag2509 3 0 3 1.000 0.000
frag2706 3 0 3 1.000 0.000

Probability of activity 0.988 0.012
Footnotes:
* number of active compounds that contain the fragment
"t number if inactive compounds that contain the fragment

number of compounds in the dataset that contain the fragment
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TABLE IV Fragments from the ABC model leave-one-out validation analysis used to predict
the activity of the respiratory nonsensitizers 2,4-Dimethylbenzyl acetate.

Fragment No. Active* No. Inactivet Total %Active %Inactive

frag4970 0 3 3 0.000 1.000
frag4979 0 3 3 0.000 1.000
frag4982 0 3 3 0.000 1.000
frag5003 0 4 4 0.000 1.000
frag5011 0 4 4 0.000 1.000
frag5032 0 4 4 0.000 1.000
frag5033 0 4 4 0.000 1.000
frag5073 0 4 4 0.000 1.000

Probability of activity 0.000 1.000
Footnotes: See Table III
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FIGURE 1 Illustration of the 22 significant fragments contributing to the active validation
prediction of methyldopa.
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A sizable number of environmental contaminants and natural products have been found to possess hormonal activity
and have been termed endocrine-disrupting chemicals. Due to the vast number (estimated at about 58,000) of
environmental contaminants, their potential to adversely affect the endocrine system, and the paucity of health
effects data associated with them, the U.S. Congress was led to mandate testing of these compounds for endocrine-
disrupting ability. Here we provide evidence that a computational structure-activity relationship (SAR) approach
has the potential to rapidly and cost effectively screen and prioritize these compounds for further testing. Our models
were based on data for 122 compounds assayed for estrogenicity in the ESCREEN assay. We produced two models,
one for relative proliferative effect (RPE) and one for relative proliferative potency (RPP) for chemicals as compared
to the effects and potency of 17p3-estradiol. The RPE and RPP models achieved an 88 and 72% accurate prediction
rate, respectively, for compounds not in the learning sets. The good predictive ability of these models and their basis
on simple to understand 2-D molecular fragments indicates their potential usefulness in computational screening
methods for environmental estrogens.

Keywords: Environmental estrogens; Xenoestrogens; Structure-activity relationship (SAR); Computational
modeling

INTRODUCTION

Compounds that mimic the activity of 17p-estradiol are of interest and concern for several
reasons. First, many environmental contaminants have been found to possess estrogenic
activity. These xenoestrogens are more generally known as endocrine disruptors. Another
group of estrogenically active agents are of medicinal value. These are the selective estrogen
receptor modulators (i.e. SERMs) that are actively being investigated as breast cancer
therapies. The widely used tamoxifen and to a lesser extent rolaxifene are two such
examples. Additionally, interest is focusing on plant derived estrogens (i.e. phytoestrogens)
as chemopreventative agents [1] as well as alternative therapies for postmenopausal hormone
replacement therapies [2,3].
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With the obvious usefulness of SERMs, medicinal chemistry has added a great deal of
understanding to the phenomena of estrogenicity and some of the health effects associated
with these compounds. Although exceptionally useful, the investigation of SERMs does not
cover the entire plethora of environmental concerns regarding endocrine active agents.
The consequence of exposure to estrogen mimics can cause a vast array of toxicological and
pharmacological responses including cancer [4-6], cancer therapy, developmental
abnormalities and altered sexual differentiation [7,8], immune disturbances [9] as well as
no observable adverse effects or even beneficial responses [1]. It has also been observed that
the timing (e.g. fetal vs. adult), hormonal status, and level and duration of exposure affect the
biological consequences associated with exposure to these agents. Moreover, apart from
diversity in biological response, the estrogen mimics, as a group, display minimal structural
homology [10]. This presents a challenge to structure-activity relationship (SAR)
approaches aimed at their identification (i.e. predicted activity), activity and understanding
mechanisms of action.

The United States Environmental Protection Agency (EPA) was mandated under the
1996 Food Quality Protection Act by the United States Congress to develop a screening and
testing strategy to determine whether exogenous substances may have an effect in humans
similar to those of natural hormones [11]. The EPA considers 87,000 chemicals as potentially
requiring analysis for endocrine activity [12]. To facilitate this, a stated key goal of the EPA is
to pursue computational methods for their analysis [13]. Computational SAR have gained
recent acceptance in the regulatory community for both human health [14] and ecological
endpoints [15].

Waller and others [16-19] have demonstrated the ability of comparative molecular field
analysis (CoMFA) to accurately predict the relative binding affinities (RBA) of several series
of compounds for the estrogen receptor. However, due to the limitations on CoMFA, these
analyses had to rely on congeneric series of compounds for the training sets. However, with
this limitation, these models are quite capable of predicting the activity of compounds that fit
this model space. Additionally, the National Center for Toxicological Research has published
a set of rat uterine cytosol RBA data [20]. Shi et al. [21] successfully analyzed this dataset
and produced predictive CoMFA and holographic quantitative structure-activity
relationship (HQSAR) models. Moreover, this same group has recently demonstrated the
use of structural alerts for estrogen activity in a logical tree-based method to prioritize
upwards of 58,000 compounds that are of environmental concern [22].

The ESCREEN dataset was chosen for several reasons. Basically, the ESCREEN assay
measures estrogen-induced growth of human MCF-7 breast cancer cells [23,24]. Given the
broad spectrum of biological assays for estrogenicity, the ESCREEN assays fall somewhere
in the middle of the biological complexity scale (i.e. above in vitro receptor binding and
below in vivo whole animal assays). This assay is well characterized, and the investigators
report estrogenic response of chemicals using two unique parameters (i.e. relative
proliferative potency (RPP) and relative proliferative effect (RPE)). RPP is the ratio between
the least amount of 17p3-estradiol needed to produce maximum proliferation and the least
amount of the test chemical needed to produce a comparable effect [25]. That is, RPP
compares the estrogenic potency of a compound to the potency of the standard estrogen
1713-estradiol. On the other hand, it is realized that many estrogenic compounds, no matter
how high the dose, will never produce cell proliferation at the rate of 1713-estradiol. The RPE
measures this effect. The PRE is 100 times the ratio of the greatest cell yield obtained with a
test chemical and that obtained by 17p3-estradiol [25].

The present investigation uses the MCASE algorithm (MultiCASE, Inc., Beechwood,
OH) to predict estrogenic activity as measured in the ESCREEN assay [25]. The advantage
of this approach is its ability to deal with non-congeneric datasets, as does HQSAR.
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However, unlike HQSAR and CoMFA approaches that require continuous-type data,
MCASE works by identifying molecular attributes associated with biological activity by
comparing attributes of active (i.e. estrogenic) to inactive (i.e. non-estrogenic) compounds
(i.e. a binary-type response). Although the MCASE program uses binary information to
discriminate among structural features associated with active and inactive compounds,
the program in this setting also took into account potency values for the active compounds.
The models and subsequent predictions based on this dichotomy can then be used to examine
structural features associated with estrogenicity and predicted the potential estrogenic
activity of unknown compounds respectively.

The present report demonstrates the ability of MCASE to adequately assess compounds for
their ability to induce an estrogenic response in MCF-7 cells. With these promising results, we
are currently assessing the method's applicability to assess estrogen receptor binding ability
as well as uterine growth stimulation and inhibition. Overall, considering the work from the
National Center for Toxicological Research and the preliminary SAR modeling approach
discussed here for environmental estrogens, it seems plausible that computational methods
singly or in combination will be able to provide a reliable method to prioritize compounds for
further testing and for regulatory classification. These methods, could therefore drastically
reduce the tremendous financial cost, time and use of animals associated with meeting the
mandate to assess these compounds for endocrine disrupting ability.

MATERIALS AND METHODS

Database

Two learning sets of 122 chemicals were created from publications of Soto and colleagues
[23,25]. Both sets contain the same chemicals. The RPP learning set consisted of 50 active
(i.e. estrogenic) and 72 inactive (i.e. non-estrogenic) chemicals. The RPE learning set
consisted of 73 active and 49 inactive chemicals. Potency values for each endpoint were
scaled to conform to MCASE requirements that SAR potency units range between 10 and 99
activity units. In this scale, inactive compounds were less than 30 and actives were greater
than or equal to 30. Inactive RPE compounds were assigned 10 units and active compounds
were scaled using the conversion equation, SAR units = 0.62 (RPE) + 29.38. Inactive RPP
compounds were assigned 10 SAR activity units and the active compounds were scaled using
the conversion equation, SAR units = 9.57 log (RPP) + 70.29.

The potency values obviously differed between the RPP and RPE models. However, the
overall designation of compounds as estrogenic or non-estrogenic also differed between
the two. Twenty three chemicals designated as inactive in the RPP set were listed as active in
the RPE model (compounds 2,2',3,3',5,5'-hexachlorobiphenyl through 6-bromonaphthol-2,
Table II). All the 23 compounds in question had very low RPE values. Although the original
authors of the studies chose to call these compounds non-estrogens, we chose to call them
active since activity (although minimal) was reported.

MCASE Methodology

The MCASE methodologies have been described [26-28]. Basically, MCASE selects its
own descriptors automatically from a learning set composed of active and inactive
molecules. The descriptors are readily recognizable single, continuous structural fragments
that are embedded in the complete molecule. The descriptors consist of either activating
or inactivating fragments termed as biophores and biophobes, respectively. Each of
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the fragments is associated with a confidence level and a probability of activity that is derived
from the distribution of these biophores and biophobes among active and inactive molecules.
MCASE then selects the most important of these fragments as a biophore (i.e. the
functionality that is associated with the largest number of active molecules and fewest
number of inactive molecules). A biophore may also be a 2-D distance descriptor based
upon the presence of lipophilic centers or heteroatoms in the molecule [29]. At this point,
a congeneric series of chemicals has been identified with the biophore being the unifying
feature. MCASE then performs a series of defined chemical substitutions of the atoms in the
first biophore (e.g. halogen for halogen or nitrogen for carbon in aromatic systems) and then
searches for similar biophores in the pool of fragments significantly related to active
chemicals. All chemicals containing these related structural features are grouped together
under a single biophore designation. Thus, a biophore may consist of a single feature or a
family of chemically similar features. Using the molecules contained in this family as
a learning set, MCASE derives a local QSAR equation for this series of chemicals.
The regression variables may be chemical properties (e.g. structural fragments),
physicochemical (e.g. log P, water solubility), or quantum chemical parameters such as
the energy of the highest occupied molecular orbital (HOMO) and the energy of the lowest
unoccupied molecular orbital (LUMO). These features ("modulators") thus augment or
decrease the basal activity associated with the biophore. The identified biophore and
modulators will then be used to derive a local QSAR equation for chemicals within this
subset. If the data set is congeneric, then the single biophore and associated modulators may
explain the activity of the entire training set; this usually does not occur and there is a residue
of molecules not explained by the single biophore and modulators. When this happens,
the program will remove from consideration the molecules already explained by this
biophore and will search for the next biophore and associated modulators. The process is
iterated until all of the active molecules in the learning set have been explained or until no
further biophores are identified.

The MCASE SAR program yields two numerical parameters when challenged with
unknown chemicals. These are a predicted probability of activity and a predicted potency
value. We have found that the ability to identify active or inactive compounds can be
optimized by separate analyses of each of the two parameters to define optimal cutoff values
for each that best separate predicted active from predicted inactive chemicals and therefore
yield the best concordance between predictions and experimental results. Bayes' Theorem
was used to combine the two individual parameters to yield an indication of the model's
overall sensitivity, specificity and concordance [30,31] (Table I). Briefly, Bayes' Theorem

TABLE I Predictive performance summary for RPP and RPE MCASE models

Model Concordance Sensitivity Specificity

RPP
SAR Units 0.72 0.72 0.72
Probability 0.74 0.70 0.76
Overall 0.72 0.72 0.72

RPE
SAR Units 0.87 0.88 0.86
Probability 0.86 0.92 0.78
Overall 0.88 0.86 0.89

Notes:
Concordance: number of correct predictions / total number of predictions.
Sensitivity: number of correct positive predictions / total number of positives.
Specificity: number of correct negative predictions I total number of negatives.
Overall: combined SAR models derived from Bayes' Theorem.
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states that the joint probability of two events is the product of the probability of one of the
events and the conditional probability of the second event, given that the first event occurs.
The system employed here starts with a prior probability for the first event, which is set at
0.5. This reflects the fact that SAR models are constructed wherein the ratio of active to
inactive chemicals is unity. Using Bayes' Theorem, this prior probability (i.e. 0.5) is updated
with the specificity and sensitivity of the first SAR submodel. This posterior probability
serves as the new prior probability to which the sensitivity and specificity of the second
submodel is incorporated. This process is iterated for the two MCASE parameters to derive
an overall probability that a chemical is active based upon the combined information of
the SAR submodels [30-32].

To examine the predictivity of the MCASE SAR models, 10-fold cross-validation tests
were conducted [33]. From the RPE and RPP learning sets, 10 mutually exclusive test sets
were prepared. These sets were credted by the random removal of approximately 10% of the
chemicals in the database. The activity of each chemical in the test set was predicted from
models developed with the remaining 90% of the database as a learning set. This allowed
the determination of sensitivity, specificity and concordance between experimental and
predicted results.

To analyze the potential of chemicals demonstrating estrogenic activity in the ESCREEN
assay to induce other toxicological phenomena including cancer and developmental toxicity
we used the "Chemical Diversity Approach". This is a method based on comparisons of the
predicted toxicological profiles of a group of 10,000 chemicals chosen to represent a random
assortment of all chemicals and chemical features [34]. These chemicals were derived
from chemical structure libraries and from a random sample of chemical structures from the
National Cancer Institute Repository of potential cancer chemotherapeutic agents.
The various toxicological properties of these chemicals are predicted using validated SAR
models including the models for RPE and RPP. The prevalence of chemicals predicted to
possess two toxicological properties simultaneously is then quantified and compared to the
expected prevalence. If the two effects are assumed to be independent of one another (i.e. null
hypothesis), then the observed and expected values should be nearly equal. A significantly
greater observed than expected prevalence indicates a similarity in mechanism among the
toxicological effects that are being studied. Likewise, a significantly lower observed than
expected prevalence suggests a possible antagonism between the phenomena under
investigation. The applicability of the methodology to the study of diverse toxicological
phenomena has been demonstrated by successfully estimating the number of potential
Salmonella mutagens in the environment [35]. The inhibition of gap junctional intercellular
communication is related to rodent carcinogenesis through cellular and systemic toxicity but
not genotoxicity [34].

RESULTS AND DISCUSSION

Examination of the performance of the RPE and RPP models indicates that both have
acceptable predictive performances to identify estrogenic and non-estrogenic compounds
(Tables I and II). Overall, the RPP model correctly assessed the estrogenic activity of 72% of
the compounds not included in the learning sets, while the RPE model correctly assessed
88% of the compounds. Interestingly, using the same 122 compounds, the RPE model
outperformed the RPP models by 16%. This was achieved by both an increase in sensitivity
and specificity. The change of 23 activity designations (see above) could have altered the
structural components of the models to the point that they were over-weighted with either
active or inactive chemicals and thus possibly, over-predict either group. However, this
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was not the case as each overall model nearly equally maintained values for sensitivity and
specificity (Table 1). Therefore, the results suggest that these exceedingly weak chemicals are
nonetheless true estrogens and contribute information to the model.

As mentioned, 23 compounds (compounds 2,21,3,3',5,5'-hexachlorobiphenyl through
6-bromonaphthol-2, Table II) have disparate activity in the two assays. These were mostly
weak RPE compounds and negative RPP ones which were in some instances categorized as
negative. Interestingly, 22 of the 23 are accurately predicted for RPE activity (Table II).
However, the RPP model "erroneously" predicted these RPP inactive compounds as active.
The predictivity of a model has been used as an acceptable measure for assessing the
"meaningfulness" of a model [36]. Moreover, we have consistently observed that good
predictivity is based on mechanistically sound and interpretable models [37,3.8]. Therefore,
we consider that the RPE model, which includes the very weak estrogens, is a more
informative model than that based on the RPP data set. This finding is significant with respect
to applying the model to environmental estrogens and phytoestrogens, many of which are
exceedingly weak compared to 17p-estradiol.

The major structural attributes that composed both models are listed in Tables ImI and IV
and shown in Figs. I and 2. The sets of biophores designated with the letter are expanded
biophores. Once the primary biophore (i.e. version a) is identified, the program searches for
similar structural fragments to include in the expanded biophore family. The MCASE model
for RPE consisted of five biophores (Table III and Fig. 1) and the model for RPP consisted of
nine biophores (Table IV and Fig. 2). The RPE biophores divided the data into three basic
groups: a phenolic ring with varying substitution patterns, the chlorinated nonaromatic
compounds, and moieties that depict the keto and hydroxy substituents of 1713-estradiol
derivatives. The RPP model was made up of biophores that were similar in nature to the RPE
biophores. The major biophore in each model was the phenolic A-ring. It should be noted
that this major biophore although not specific for a hydroxyl substitution which is commonly
associated with estrogenicity was derived predominately from phenols.

Interestingly, the RPE biophores were more robust, each typically being derived from
more chemicals than those in the RPP model. For example, what is explained with biophores
1-4 in the RPP model is explained with only two biophores in the RPE model. It is
noteworthy that the RPE model outperformed the RPP model with fewer structural moieties
being associated with activity. Therefore, designating the 23 weak estrogens as active
compounds facilitated a refinement of features associated with estrogenicity. That is to say,
the model contained more robust structural features and thus also indicates the superiority of
the RPE over the RPP model.

Since the RPE model is both simpler and more predictive, we used it in the "Chemical
Diversity Approach" to investigate the possible role of estrogens in other toxicological
phenomena. Essentially, based on the greater than expected prevalence of chemicals
possessing two toxicological properties simultaneously (one being estrogenicity in this
exercise) we can hypothesize on the underlying mechanisms of action being related. The first
analysis consisted of comparing the RPP and RPE models. As expected, there was a high
degree of similarity verifying that, although they both are measuring different estrogenic
endpoints (i.e. proliferative potency and effect relative to 17p-estradiol), these endpoints are
related (Table V, Analysis 1). The two major health concerns related to environmental
estrogens are their potential to induce cancer and developmental effects. We found that
generally the RPE model did not significantly overlap with chemicals that have the potential
to induce mutagenicity, unscheduled DNA synthesis, and chromosomal aberrations
(Table V, Analyses 2-4). This is not unexpected as estrogens are not genotoxic per se.
Only the SOS Chromotest showed significant commonality with estrogens (Table V,
Analysis 5). This may be a reflection of the fact that this assay, unlike the others, responds
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TABLE IU Experimental results and MCASE predictions for RPP and RPE

RPP RPE

Chemical Experimental Prediction Experimental Prediction

1,2-Dichloropropane
l-Naphthol +
2,3,7,8-TCDD
2,4-DB Acid
2,4-Dichlorophenoxyacetic acid
2-Naphthol + - +
4-Butooxyphenol - + -

4-Hexyloxyphenol - + -

5,6,7,8-Tetrahydronaphthol-2 - + -

Alachlor
Atrazine
Bendiocarb - - -

Butylate
Butylated hydroxytoluene - - -

Carbaryl
Carbofuran - - -
Chlordimeform - - - +
Chlorothalonil - -

Chiorpyrifos - - -
Cyanazine
Dacthal
Diamyl phthalate - - -
Diazinon
Dibutyl phthalate - - -
Dimethyl isophthalate - - -

Dimethyl terephthalate - - -

Dinonyl phthalate - - -
Dinoseb
Hexachlorobenzene - - -
Hexazinone - - -
Kelthane - - - +
Lindane
Malathion
Maneb or zineb - - -

Methoprene - - -
Metalochlor - - -
Mirex - + - +
Octachlorostyrene -
Parathion - +
Phenol - +
Picloramn
Propazin
Rotenone
Simazine
Styrene - - - +
Tetrachloroethylene - - -

Thiram
Trifluralin
Ziram
2,2',3,3',5,5'-Hexachlorobiphenyl - - I +
2,3,3',4,5-Pentachlorobiphenyl - + 1 +
3,5-Dichloro-4-hydroxybiphenyl - 1.5 +
4-Monochlorobiphenyl - - 2.1 +
2,3',5-Trichlorobiphenyl - - 2.2 +
3,5-Dichlorobiphenyl - - 2.7 +
2,3,5,6-Tetrachlorobiphenyl - - 3.1 +
2,6-Dichlorobiphenyl - - 3.4 +
Decachlorobiphenyl - - 3.5 +
2,5-Dichlorobiphenyl - - 3.7 +
Chlordene - + 4 +
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TABLE 1I - continued

RPP RPE

Chemical Experimental Prediction Experimental Prediction

Gibberellic acid + 4
2,3,4,5,6-Pentachlorobiphenyl + 4.4 +
2-Monochlorobiphenyl 4.4 +
2,3,4,4'-Tetrachlorobiphenyl - + 4.7 +
2',31,4',5,'5-Pentachloro-2-hydroxybiphenyl - + 4.8 +
4-Ethylphenol - + 5 +
Chlordane - + 5 +
3,5-Dichloro-2-hydroxybiphenyl - + 5.4 +
2,3,6-Trichlorobiphenyl - 5.8 +
Heptachlor - + 8 +
4-Propylphenol - + 17 +
6-Bromonaphthol-2 - + 38 +
t-Butylhydroxyanisol 0.00006 + 30 +
2',5'-Dichloro-2-hydroxybiphenyl 0.0001 13 +
21,31,4',5'-Tetrachloro-3-hydroxybiphenyl 0.0001 + 35.3 +
2,3,4,5-Tetrachlorobiphenyl 0.0001 39.2 +
1-Hydroxychlordene 0.0001 + 40 +
Toxaphene 0.0001 51.9
Dieldrin 0.0001 - 54.89 +
Methoxychlor 0.0001 + 57 +
2,2',3,3',6,6'-Hexachlorobiphenyl 0.0001 61.6 +
2,2',4,5-Tetrachlorobiphenyl 0.0001 + 61.6 +
2',5'-Dichloro-3-hydroxybiphenyl 0.0001 + 69.9 +
p,p1-DDT 0.0001 + 71 +
2,4,4',6-Tetrachlorobiphenyl 0.0001 75.7 +
2,3,4-Trichlorobiphenyl 0.0001 77 +
Endosulfan 0.0001 - 81.25
Kepone 0.0001 84
o,p'-DDD 0.0001 84 +
o,p'-DDT 0.0001 + 86.14 +
4-tert-Butylphenol 0.0003 + 71 +
4-sec-Butylphenol 0.0003 + 76 +
Bisphenol A 0.0003 + 82 +
4,4'-Dihydroxyiphenyl 0.0003 + 84 +
4-Hydroxybiphenyl 0.0003 + 87 +
Butylbenzylphthalate 0.0003 90
4-iso-Pentylphenol 0.0003 - 93
4-tert-Pentylphenol 0.0003 + 105 +
2,2',5-Trichloro-4-hydroxybiphenyi 0.001 + 37.8 +
2',5'-Dichloro-4-hydroxybiphenyl 0.001 + 71.2 +
Tamoxifen 0.001 + 75* +
21,3',4',51-Tetrachloro-4-hydroxybiphenyl 0.001 + 92 +
Coumestrol 0.001 + 93
Bisphenol A dimethacrylate 0.003 - 84 +
4-Nonylphenol 0.003 + 100 +
2',4',6'-Trichloro4-hydroxybiphenyl 0.01 + 99.8 +
4-Octylphenol 0.03 + 100 +
5-Octylphenol 0.03 + 100 +
Pseudo diethylstilbestrol 0.1 + 100 +
16-Hydroxyestrone 0.1 + - +
Zearalenone I + 88
Zearalenol 1 + 93
Equilenin 1 + 100 +
Estrone I + 100 +
Allenolic acid 1 105
Estriol 10 + 100 +
Indenestrol 10 + 100 +
17p-estradiol 100 + 100 +
Ethynylestradiol 100 + 100 +
11 -chloromethylestradiol 1000 + 110 +
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TABLE II - continued

RPP RPE

Chemical Experimental Prediction Experimental Prediction

Moxestrole 1000 + 110 +
Diethylstilbestrol 1000 + 112 +

Note:° RPE potency value estimated from compounds with similar RPP values.

to oxidative mutagens [39] of the type that are derived from estrogens [40-43]. Interestingly,
there is antagonism between estrogenicity and the induction of micronuclei as indicated
by the significantly less than expected overlap (Table V, Analysis 6). This could reflect that
there are two mechanisms to induce micronuclei: genotoxic vs. non-genotoxic (e.g. via
inhibition of tubulin polymerization). However, analysis of estrogens and carcinogens

TABLE M MCASE biophores associated with estrogenic activity measured by RPE in the ESCREEN assay

Biophore Total Inactive Active

Ia. cH fcH -c =cH - 70 13 57
lb. c ( ýcH -c =c ) - 2 0 2
lc. cH = c -c = c- 24 0 24
Id. cH = cH -c =c - 26 0 26
2. CI -c ýc -c 24 0 24
3. Cl -C -- C 7 0 7
4. OH--CH- 7 0 7
5. CO--C- 5 0 5

Each biophore is accompanied by the number of compounds contributing to it, the number of active and inactive compounds, and
their average activity.
Notes:
Biophore interpretation:
c: aromatic carbon.
0: attachment of electron withdrawing or electron donating group.
": epoxide.

(#-atom): biophore branch at atom # with substituent.
See Fig. I for illustration of biophores.

TABLE IV MCASE biophores associated with estrogenic activity measured by RPP in the ESCREEN assay

Biophore Total Inactive Active

Ia. cH =cH -c (=cH - 41 9 32
lb. c -cH -c (=c - 1 0 1
Ic. c (ýcH -c =c )- 2 0 2
2a. cH =c -c =c -c =cH - (2-Cl) 4 0 4
2b. cH =c -cH =c -c ý -- (2-Cl) 2 0 2
3a. cH =cH -c =cH -cH ýc -CH - 6 0 6
3b. CH2 -c =cH -ccH =cH -cH lcH - 1 0 1
5. Cl -c =c -c =c -c =cH-cH cH -cH = (5-cH=) 2 0 2
6. C--C--C--C-- (2-Cl) 3 1 2
7. OH -CH -CH - 2 0 2
8. 6O-CH- 1 0 1
9. O -SO -O -CH2--CH -C -C - (6-C1) 1 0 1

Each biophore is accompanied by the number of compounds contributing to it, the number of active and inactive compounds, and
their average activity.
Notes: see Table 111.
See Fig. 2 for illustration of biophores.
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FIGURE I Illustration of MCASE biophores associated with estrogenic activity measured by RPE in the
ESCREEN assay.

indicate that they may significantly share a common underlying mechanism (Table V,
Analyses 7-10). Only the CPDB rat model did not significantly overlap with estrogenicity
(Table V, Analysis 8). Analyses 11 and 12 of Table V show a significant overlap between
estrogenicity and developmental toxicity in both humans and hamsters. Overall, these
findings provide credibility to the mechanistic basis of the ESCREEN models.

CONCLUSIONS

The present analysis of estrogenicity with the MCASE program clearly indicates the utility
of the program in assessing unknown compounds for estrogenicity. Given the complex
structural nature of estrogenic compounds, it is imperative that any computational method
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FIGURE 2 MCASE biophores associated with estrogenic activity measured by RPP in the ESCREEN assay.



SAR OF ESTROGENS: THE MCASE APPROACH 65

TABLE V Mechanistic relationships of the ESCREEN RPE assay to other toxicological endpoints including
genotoxicity, developmental effects and carcinogenesis

Analysis (References) Observed Expected p-value A* 10O4/Expected

1. ESCREEN relative proliferative potency 776 236 < 0.0001 540 228.8
2. Salmonella mutagenicity [44,45] 470 461 0.763 9 1.9
3. Unscheduled DNA synthesis [461 485 445 0.179 40 9.0
4. Chromosomal aberrations [47] 364 400 0.184 - 36 - 9
5. SOS chromotest [48,49] 338 273 < 0.0001 65 23.8
6. Induction of micronuclei [50] 16 125 < 0.0001 - 109 - 87.2
7. CPDB mouse [37] 561 466 0.002 95 20.4
8. CPDB rat [38] 531 490 0,188 41 8.4
9. NTP mouse [47] 843 555 < 0.0001 288 51.9
10. NTP rat [47] 407 271 < 0.0001 136 50.2
11. Hamster developmental toxicity [51] 491 416 0.011 75 18.0
12. Human developmental toxicity [52] 338 274 0.009 64 23.4

Notes:
Observed: Number of compounds simultaneously, identified to be estrogens using the RPE model and the row-listed endpoint.
Expected: The product of the individual prevalences of compounds identified to be estrogens using the RPE model and the row-listed
endpoint.
p-value: Difference of two means test.
A: Difference of observed from expected.
100AExpected: Percent difference from expected.

applied to their analysis is capable of coping with noncongeneric datasets. As evidenced
by MCASE's predictive performance, it seems likely that this program has the potential to be
a useful tool for screening and prioritizing environmental agents for subsequent testing.
Moreover, we are applying this method in the development of models depicting relative
binding ability to the estrogen receptor and for uterotropic and antiuterotropic activity.
We speculate that although the program could be used as a stand-alone entity for screening
potentially endocrine active compounds, it seems more likely and prudent that it could
contribute as part of a battery of computational tools aimed at prioritizing compounds.
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